首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2695篇
  免费   383篇
  国内免费   79篇
电工技术   157篇
综合类   152篇
化学工业   1271篇
金属工艺   63篇
机械仪表   32篇
建筑科学   54篇
矿业工程   59篇
能源动力   129篇
轻工业   301篇
水利工程   11篇
石油天然气   127篇
武器工业   15篇
无线电   133篇
一般工业技术   249篇
冶金工业   322篇
原子能技术   48篇
自动化技术   34篇
  2024年   4篇
  2023年   61篇
  2022年   37篇
  2021年   112篇
  2020年   135篇
  2019年   100篇
  2018年   85篇
  2017年   95篇
  2016年   98篇
  2015年   94篇
  2014年   170篇
  2013年   153篇
  2012年   183篇
  2011年   189篇
  2010年   129篇
  2009年   139篇
  2008年   125篇
  2007年   134篇
  2006年   147篇
  2005年   116篇
  2004年   96篇
  2003年   108篇
  2002年   100篇
  2001年   86篇
  2000年   66篇
  1999年   61篇
  1998年   49篇
  1997年   34篇
  1996年   40篇
  1995年   40篇
  1994年   34篇
  1993年   27篇
  1992年   25篇
  1991年   23篇
  1990年   13篇
  1989年   3篇
  1988年   9篇
  1987年   11篇
  1986年   6篇
  1985年   4篇
  1984年   7篇
  1983年   3篇
  1982年   3篇
  1981年   2篇
  1980年   1篇
排序方式: 共有3157条查询结果,搜索用时 46 毫秒
11.
滴定-凝胶法制备球形水凝胶吸附材料具有3D倒漏斗状微观形貌结构,孔径分布宽泛,对水体中重金属、染料等污染物具有快速响应机制,已被广泛用于水处理过程研究。综述了滴制法制备球形水凝胶吸附材料的主要过程机理、水凝胶具有的特殊形貌结构及其在水处理过程中的应用,分析了球形水凝胶吸附材料在水处理应用过程中存在的问题和局限,并指出了其在水处理领域的应用前景及发展方向。  相似文献   
12.
为了提高钒电池电解液的性能,选取了3种复合添加剂,研究了复合添加剂对钒电池正极电解液稳定性和电化学性能的影响。利用电化学方法制备了2 mol/L的全钒液流电池正极5价钒离子电解液,采用临界胶束浓度法得到复合添加剂的配比为:1% KHSO4+3 mmol/L SDBS(十二烷基苯磺酸钠)、1% KHSO4+2 mmol/L D-山梨醇、1% KHSO4+2 mmol/L CTAB(十六烷基三甲基溴化铵),并考察添加剂加入电解液后的稳定性与电化学性能。通过XRD分析手段,对电解液沉淀物的成分进行了表征。研究表明:添加剂的加入,并不会引起钒离子价态的变化,1% KHSO4+2 mmol/L CTAB加入后,电解液峰电位差减小12 mV,峰电流增加9.8 mA,说明CTAB与KHSO4在合适配比下,能够有效提高正极电解液的稳定性及可逆性,添加剂的引入并未引起电解液沉淀物的物相组成变化,电解液性能显著提高。  相似文献   
13.
The discovery of the oxygen chemistry phenomenon reveals bright future toward new sustainable layered Na-based transitional oxides. However, the poor capacity retention problem of the cathode has hindered the development of sodium ion batteries (SIBs). In this work, a new Li-doped compound Li0.2Na1.0Mn0.8O2 is proposed, which demonstrates refined cycling durability with 51.6% after 100 cycles at 50 mA g−1, superior than Na1.2Mn0.8O2 with only one cycle. Then in situ X-ray diffraction (XRD) and density function theory (DFT) are employed to explore the lattice distortion and confirm stable lattice framework introduced by Li atoms with eliminated P2-O2 phase transition upon cycling, guaranteeing outstanding electrochemically stable performance. In addition, Li0.2Na1.0Mn0.8O2 demonstrates activation of Mn as well as O chemistry redox in the lattice, detected by ex situ electronic paramagnetic resonance spectroscopy (EPR) as well as in situ Raman, which indicate not only Na-deficient Mn-based layered oxide but also Na-rich Mn-based compound can represent oxygen redox.  相似文献   
14.
To stabilize bromine produced during a vanadium-bromine redox flow batteries (VBr RFBs) charging, a bromine complexing agent (BCA) should be effectively used as a supporting material in VBr electrolyte. However, there remains a problem of improving the unstable reversibility between V2+ and V3+ in electrolyte including halogen elements (Br and Cl). This paper describes two imidazole-based BCAs, which are 1,2-dimethyl-3-ethylimidazolium bromide (DMEIm: C7H13BrN2) and 1,2-dimethyl-3-propylimidazolium bromide (DMPIm: C8H15BrN2), for not only confirming the capture of bromine but also improving the redox reaction of vanadium ions in VBr electrolyte. The effectiveness of the proposed two imidazole-based BCAs is demonstrated through the following experiments: cyclic voltammetry (CV), nuclear magnetic resonance analysis (NMR), scanning electron microscopy (SEM) analysis and cyclic cell operation test. Experimental results show that both the diffusion coefficient and the peak currents of each electrolyte using the proposed imidazole-based BCAs increases linearly with the rise of scan rate on the recorded CV curves, providing improved reversible reaction of V2+/V3+ in negative electrolyte. It also exhibits that the electrolytes using the DMEIm and DMPIm provide significantly improved charge (discharge) capacities which are 9.38 (31.01) % and 11.8 (35.66) % higher than the pristine one, respectively, resulting in 13.27% and 14.36% higher current efficiencies. In addition, corrosion cracks on the separator surface due to bromine attack are not observed after the cyclic cell operation. Consequently, these results indicate that the proposed two imidazole-based BCAs can not only sequester bromine during the VBr RFB charging, but also enhance electrochemical reversibility caused by improving diffusion coefficient of vanadium.  相似文献   
15.
Tumor-specific metabolic adaptations offer an interesting therapeutic opportunity to selectively destroy cancer cells. However, solid tumors also present gradients of nutrients and waste products across the tumor mass, forcing tumor cells to adapt their metabolism depending on nutrient availability in the surrounding microenvironment. Thus, solid tumors display a heterogenous metabolic phenotype across the tumor mass, which complicates the design of effective therapies that target all the tumor populations present. In this work, we used a microfluidic device to study tumor metabolic vulnerability to several metabolic inhibitors. The microdevice included a central chamber to culture tumor cells in a three-dimensional (3D) matrix, and a lumen in one of the chamber flanks. This design created an asymmetric nutrient distribution across the central chamber, generating gradients of cell viability. The results revealed that tumor cells located in a nutrient-enriched environment showed low to no sensitivity to metabolic inhibitors targeting glycolysis, fatty acid oxidation, or oxidative phosphorylation. Conversely, when cell density inside of the model was increased, compromising nutrient supply, the addition of these metabolic inhibitors disrupted cellular redox balance and led to tumor cell death.  相似文献   
16.
The anionic redox chemistries of layered cathode materials have been in focus recently due to an intriguing phenomenon that cannot be described by the number of electrons of transition metal ions. However, even though several studies have investigated the anionic redox chemistry of layered materials in terms of the charge compensation, the relationship between the origin of the structural behavior and anionic redox chemistry in layered materials remains poorly understood. In addition, a simultaneous redox process of transition metal ions could occur through the d bands interaction. Here, it is demonstrated that the anionic redox chemistry is associated with the anisotropic structural behavior of the layered cathode materials albeit without providing additional capacities exceeding the theoretical values. These findings will provide a foundation of a new chapter in the understanding of the properties of materials.  相似文献   
17.
Microbial electrochemical systems in which metabolic electrons in living microbes have been extracted to or injected from an extracellular electrical circuit have attracted considerable attention as environmentally‐friendly energy conversion systems. Since general microbes cannot exchange electrons with extracellular solids, electron mediators are needed to connect living cells to an extracellular electrode. Although hydrophobic small molecules that can penetrate cell membranes are commonly used as electron mediators, they cannot be dissolved at high concentrations in aqueous media. The use of hydrophobic mediators in combination with small hydrophilic redox molecules can substantially increase the efficiency of the extracellular electron transfer process, but this method has side effects, in some cases, such as cytotoxicity and environmental pollution. In this Review, recently‐developed redox‐active polymers are highlighted as a new type of electron mediator that has less cytotoxicity than many conventional electron mediators. Owing to the design flexibility of polymer structures, important parameters that affect electron transport properties, such as redox potential, the balance of hydrophobicity and hydrophilicity, and electron conductivity, can be systematically regulated.  相似文献   
18.
Biology uses diffusible oxidants to perform functions that range from signaling to matrix assembly, and these oxidation chemistries offer surprising selectivities. Here, it is reported that mediated electrochemistry can access the richness of such oxidation chemistries. Specifically, electrode‐imposed voltage inputs are used to locally generate oxidized mediators that can diffuse into polymer solutions and induce the formation of covalent bonds for the deposition and functionalization of hydrogels at the electrode surface. Depending on the mediator's redox potential (E0), it is possible to “gate” the voltage inputs to target specific residues (e.g., thiols or amines) and oxidation chemistries. Further, mediators of varying E0 offer different reactivities and thus allow control of reaction‐diffusion rates to modulate the hydrogel's crosslink density and mechanical properties. Importantly, this mediated oxidation can be performed under physiologically relevant conditions to preserve labile biological functionalities (e.g., cell viability and protein function). Finally, it is demonstrated that protein fusion tags can be engineered to have “targetable” amino acid residues that enable protein function to be oxidatively conjugated to electrodeposited hydrogels. In summary, mediated electrochemistry can engage orthogonal oxidation chemistries to create functionalized matrices and thus mediated electrochemistry should add important capabilities to the electrofabrication toolbox.  相似文献   
19.
A series of novel branched sulfonated polyimide (bSPI-x) membranes with 8% branched degree are developed for application in vanadium redox flow battery (VRFB). The sulfonation degrees of bSPI-x membranes are precisely regulated for obtaining excellent comprehensive performance. Among all bSPI-x membranes, the bSPI-50 membrane shows strong vanadium permeability resistance, which is as 8 times as that of commercial Nafion 212 membrane. At the same time, the bSPI-50 membrane has remarkable proton selectivity, which is four times as high as that of Nafion 212 membrane. The bSPI-50 membrane possesses slower self-discharge speed than Nafion 212 membrane. Furthermore, the bSPI-50 membrane achieves stable VRFB efficiencies during 200-time charge-discharge cycles at 120–180 mA cm?2. Simultaneously, the bSPI-50 membrane exhibits excellent capacity retention compared with Nafion 212 membrane. All results imply that the bSPI-50 membrane possesses good application prospect as a promising alternative separator of VRFB.  相似文献   
20.
德兴铜矿酸碱废水水质分析方法   总被引:1,自引:0,他引:1  
龚莹 《有色金属》2002,54(2):114-117
为了给德兴铜矿酸碱废水治理工艺提供准确的酸性废水的酸度,碱性废水的碱度,TFe和Fe^2 以及CaCO3的浓度数据,进行分析方法的研究和探讨。采用电位洋定法测定酸度碱度,辈我啉比色法测定TFe和Fe^2 ,以及用修列达法(JISK/451)测定尾矿浆碱水中的CaCO3含量。介绍分析方法的改进,分析过程步骤和分析结果。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号